Rocket Design

Tripoli Minnesota Gary Stroick February 2010

•••

Focus is on designing aerodynamically stable rockets not drag optimization nor construction techniques!

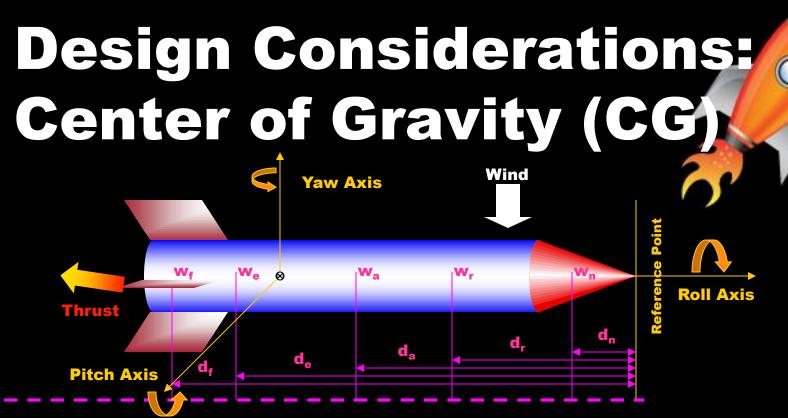
Agenda

- Overview
- Airframes
- Fins
- Nose Cones
- Altimeter Bays
- Design Rules of Thumb
- Summary

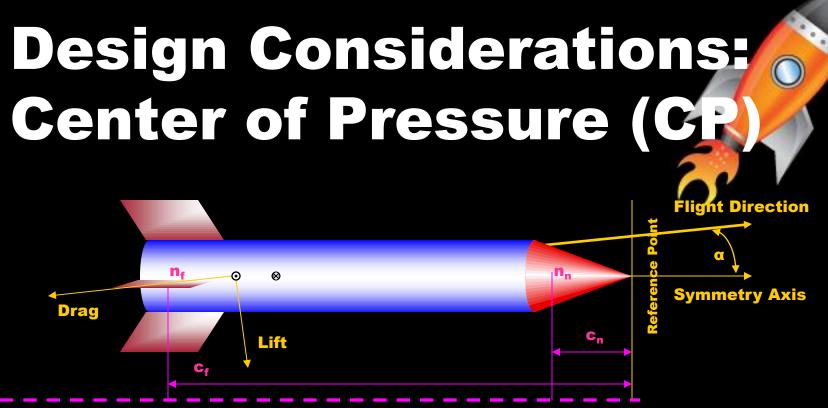
Overview

- Mission
- Design Considerations
- Design Implications

Mission


- Certification (Level 1, 2, or 3)
- Altitude
- Velocity/Acceleration
- Payload (Liftoff Weight)
- Design Experiments
 - Recovery
 - Motors
 - Structural: Nose Cone, Fins, Transitions
 - Staging
 - Electronics: Cameras, Sensors, ...

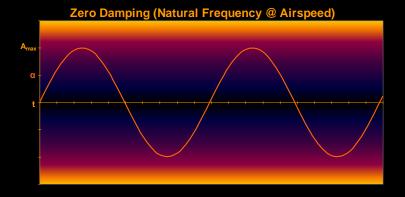
Design Considerations


- Aerodynamic Stability
 - Static
 - Dynamic
- Optimization
 - Drag: Pressure, Viscous (Surface Roughness, Interference, Base, Parasite) Angle of Attack, Rotation
 - Mass
- Flexibility
 - Motor Sizes
 - Airframe Configurations

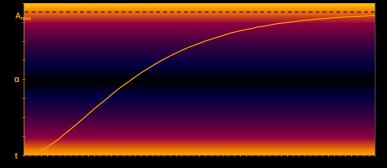
Design Considerations

- Key Concepts
 - Center of Gravity
 - Center of Pressure
 - Damping Ratio
 - Corrective Moment
 - Damping Moment
 - Longitudinal Moment
 - Roll Stabilization

- CG ia a single point through which all rotation occurs
- Sum of the product of weights and distance from a reference point CG=(d_nw_n+d_rw_r+d_aw_a+d_ew_e+d_fw_f)/W

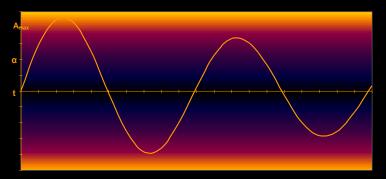


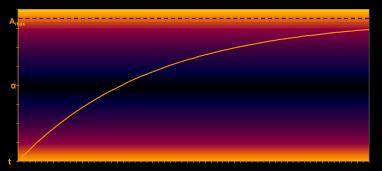
- CP is a single point through which all aerodynamic forces
 act
- Barrowman's Method (Subsonic only)
 - Sum of the product of projected area, angle of attack, normal force, air density, airspeed, and distance from a reference point (simplification requires integration) $CP=(c_nn_n+c_fn_f)/N$
 - Calibers = (CP-CG)/d_{max}


Design Considerations: Damping Ratio (DR)

- Applicable to both impulsive (wind gusts, thrust anomalies) and continuous (rail guides, fins) forces
- Over damping and significant under damping results in large flight deflections
- Optimum damping ratio is .7071
 - Under damping is preferred to over damping

Design Considerations: Damping Ratio (cont)




Critically Damped (ζ=1)

Overdamped Response

Copyright © 2010 by Gary Stroick

Design Considerations: Corrective Moment (CM

- An angular velocity which redirects nose to flight path in response to an angle of attack.
- $C_1 = \frac{\rho}{2} v^2 A_r N_{\alpha}(CP-CG) subsonic only$
- Variables:
 - Air Density (ρ) decreasing
 - Velocity (v) increases then decreases
 - Reference Area (A_r) usually constant
 - Normal Force Coefficient (N_{α}) increasing
 - **CP** constant (unless supersonic)
 - CG changes (usually forward)

Design Considerations: Damping Moment (DM)

- Response to corrective moment (minimizes overcorrection by slowing angular velocity).
- Comprised of two components:
 - Aerodynamic
 - Varies based on air density, velocity, reference area, and CG
 - Propulsive
 - Applicable only during motor thrust
 - Varies based on mass flux

Design Considerations: Longitudinal Moment

- Mass distribution along longitudinal axis
- Point mass assumptions appropriate for components distant from CG (underestimate)
- Large values of LM reduce sensitivity to impulsive forces and protect against over damping

Design Considerations: Roll Stabilization

Negatives:

- Provides no benefit if statically unstable
- Damping ratio is still critical
 - Roll decreases damping
 effectiveness
 - Large slenderness ratio is critical
 - Rolling light, short stubby rockets can result in instability
 - Close roll rate and natural frequency values result in resonance
- Increases drag

Positives:

- Suppresses instability growth rate
- Reduces amplitude of initial disturbances
- Time average of disturbances
- Construction imperfections become sinusoidal

Requires High Angular Momentum!

Design Implications: Stability Margin

- Stable when CG in front of CP
- CG in front of CP by 1 or more calibers but less than 5 calibers
 - Increasing calibers increases CM and decreases DR
- CG can be moved by changing static weight distributions
- CP can be moved by
 - Alternative nose cone designs
 - Elliptical > Ogive > Parabola/Power Series/Von Karman > LV Haack > Conical
 - Fin size and placement
 - Move CP Back Increase size and/or move back
 - Move CP Forward Decrease size and/or move forward
 - Boat tail and transition length, radius differential, and placement

Design Implications: D

Increase:

ΘØ

- Increase fin area
- Move fins away from CG
 - Applies to canards
- Increases damping ratio
- Taken to extremes:
 - Excessive drag reduces altitude
 - Construction errors may result in over damping

Decrease:

- All fin area aft of CG
- Fin area close to CG
- \rightarrow
- Reduces corrective moment
- May reduce damping ratio
- **Taken to extremes:**

ΘØ

 Catastrophic resonance at low roll rates

Copyright © 2010 by Gary Stroick

Design Implications:

Increase:

Θ

- Increase fin area
- Move fins aft
- Increase Airspeed
- \rightarrow
- Increases oscillation frequency
- May increase damping ratio
- Decreases disturbance recovery time
- Taken to extremes:

Ø

- Step disturbances will cause severe weather cocking (turning into the wind)
- Excessive speeds cause excessive aerodynamic drag

Decrease:

- Reduce CG/CP separation
- Decreases oscillation frequency
- Decreases natural frequency
- Increases damping ratio
- **Taken to extremes:**

ΘØ

 Catastrophic over damping

Copyright © 2010 by Gary Stroick

Design Implications: LMP

Increase:

- Add weight fore and aft of CG
- Increase length
- Decreases damping ratio & natural frequency
- More difficult to deflect from flight path
- Taken to extremes:
 - Weight reduces altitude
 - Catastrophic resonance at low roll rates

Decrease:

- Reduce weight fore and aft
- Reduce length
- Increases damping ratio & natural frequency
- Frequent disturbances and resulting angles of attack will increase drag & lower altitude
- More easily deflected from flight path
- **Taken to extremes:**
 - Weight reduces altitude (ballistically below optimum)
 - Catastrophic over damping

© ® Copyright © 2010 by Gary Stroick

Airframes

Туре	Strength	Weight	RF	Aging Effects
Carbon Fiber	1	4	Opaque	Minimal
Aluminum	2	6	Opaque	None
Fiberglass	3	5	Transparent	Minimal
Blue Tube	4	3	Transparent	Unknown
Phenolic	5	1	Transparent	Brittle
Quantum Tube	6	2	Transparent	None

 \bigcirc

Fins

- Parallelograms are effective and easily produced shapes
- Roll stabilization
 - Canted
 - Airfoil
 - Spinnerons
- Location and size affect DM, CM, and stability margin
- Fin flutter and divergence undesirable
 - Avoid by using stiff materials, thicker fins wider fillets, and/or thru the wall designs

Nose Cones

- Design Considerations:
 - CG adjustments by changing weight
 - Recovery harness assembly
 - Never use open ended eye bolts!
 - Never use plastic attachment points!
 - May include electronics or payload
 - Seriously consider shear pin retention
 - Types: Conical, Ogive, Parabolic, Elliptical, Power Series, & Sears-Haack (varying CP, CG, and drag coefficients)

Altimeter Bays

- Design Considerations
 - Space Availability
 - Survivability and Placement of Electronics
 - MAD use non-magnetic materials
 - Redundancy
 - Reusability
 - Ease of Use (Accessibility, Assembly, Disassembly)
 - Arming and Disarming
 - Switches in reachable location (avoid rod/rail)
 - Port Placement
 - Ports should be away from barometric sensors
 - Recovery System
 - Dual or single deployment
 - Split, aft, or forward deployment
 - Ejection method (BP, CO2, Spring) and placement
 - Harness attachment points and assembly
 - Never use open ended eye bolts! Forged eyes or U bolts.
 - Sew together harness or use figure eight/bowline knots (weakest point)

Copyright © 2010 by Gary Stroick

• Motor:

- Thrust to weight ratio 5:1
- Minimum stable flight speed: 44 feet/sec
 - Calm add 6 ft/sec for every 1 mph
- Airframe:
 - Length to diameter ratio 10-20:1
 - Consider anti-zipper designs
 - Airframe reinforcement (AL bands, etc)
 - Recovery connections points (couplers in airframe, not altimeter bay, and extended outside airframe)
- Fins:
 - Number: ≥ 3
 - Fin Root to diameter 2:1
 - Fin Span/Cord to diameter 1:1

Recovery

- Recovery Harness to length: 3+:1
- Recovery Harness to weight: 50:1
- Decent Rate: 15-20 feet/sec
- Shear pin number: ≥ 3
- Ejection Charge:
 - LBS*Length*.000516=BP grams
 - I use 100 lbs but can vary based on diameter
 - Don't use black powder over 20,000 ft unless enclosed in airtight container
 - If using shear pins account for required shear pin shearing force

Launch Guides

- Rail Buttons
 - Number: ≥ 2
 - Location: CG (required) and Aft
- Launch Lugs
 - Number: ≥ 1
 - Location: CG (required) and Aft

Altimeter Bay

- Port Number $(P_n): \geq 3$
- Port Diameter: $\pi r^2 I/(400*P_n)$

Vent Holes

- Needed when friction retention is used
- Unnecessary with shear pins (my opinion)
- Nose Cones
 - Optimum Fineness ratio: 5:1
 - Shoulder ratio to diameter: 1:1

What can happen?

Copyright © 2010 by Gary Stroick

References

- Topics in Advanced Model Rocketry; Mandell, Gordon K., Caporaso, George J., Bengen, William P.; The MIT Press; 1973
- Modern High Power Rocketry 2; Canepa, Mark; Trafford Publishing, 2005

Selected Websites

- http://exploration.grc.nasa.gov/education/ro cket/guided.htm
- http://www.apogeerockets.com/Peak-of-Flight_index.asp
- http://www.info-central.org/
- http://www.rocketmaterials.org/
- http://www.thefintels.com/protected.htm
- http://www.nakka-rocketry.net/
- http://www.arocketry.net/
- http://my.execpc.com/~culp/rockets/Barrow man.html